If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-35=0
a = 2; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·2·(-35)
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{70}}{2*2}=\frac{0-2\sqrt{70}}{4} =-\frac{2\sqrt{70}}{4} =-\frac{\sqrt{70}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{70}}{2*2}=\frac{0+2\sqrt{70}}{4} =\frac{2\sqrt{70}}{4} =\frac{\sqrt{70}}{2} $
| √3x^2-2√2x-2√3=0 | | 1/2=7/x | | 2w+8=50 | | -9.8+14.48=-6.94-14f | | 2w+8/2=25 | | 4(x+5)-3(x-3)=2(x-15) | | 85x-136=17(5x-8) | | 12x+4=32 | | 10–5x=10x–80 | | 5+v=7 | | 17-x=27-3x | | 43x+79=43x+38 | | 12+2m=5-5(4+5m) | | 5(4x-3)=5x-6 | | -17c=-16c+15 | | 10-5x=10x-80 | | 8x-15=3(5+6x) | | 348=-6(-7v-2) | | 13j+20=11j-12 | | 4x+x+6=10x-5x+6 | | -9-3(9x+8)=11 | | 12w-6w=54 | | 30-5p=2(3-6p)-5p | | a-8=(6+5a)/(3) | | a-8=(6+5a)/3 | | -3(4x-2)=3 | | 3x-57=135 | | 3/7x+1/2=4/9-4/7x+4/9 | | -4(x-12)=-68 | | -4(x-12)=68 | | 64^(2-2x)=16 | | 8(-3n-4)-3=-107 |